Домой / Программы / Алгебраическое дополнение а23. Алгебраические дополнения и миноры. Виды миноров и алгебраических дополнений. Алгебраическое дополнение $A_{ij}$ элемента $a_{ij}$

Алгебраическое дополнение а23. Алгебраические дополнения и миноры. Виды миноров и алгебраических дополнений. Алгебраическое дополнение $A_{ij}$ элемента $a_{ij}$

    Алгебраическое дополнение - понятие матричной алгебры; применительно к элементу aij квадратной матрицы А образуется путем умножения минора элемента aij на (1)i+j; обозначается Аij: Aij=(1)i+jMij, где Mij минор элемента aij матрицы A=, т.е. определитель… … Экономико-математический словарь

    алгебраическое дополнение - Понятие матричной алгебры; применительно к элементу aij квадратной матрицы А образуется путем умножения минора элемента aij на (1)i+j; обозначается Аij: Aij=(1)i+jMij, где Mij минор элемента aij матрицы A=, т.е. определитель матрицы,… … Справочник технического переводчика

    См. в ст. Определитель … Большая советская энциклопедия

    Для минора М число, равное где М минор порядка k, расположенный в строках с номерами и столбцах с номерами некоторой квадратной матрицы Апорядка п; определитель матрицы порядка n k, полученной из матрицы Авычеркиванием строк и столбцов минора М;… … Математическая энциклопедия

    В Викисловаре есть статья «дополнение» Дополнение может означать … Википедия

    Операция, к рая ставит в соответствие подмножеству Мданного множества Xдругое подмножество так, что если известны Ми N, то тем или иным способом может быть восстановлено множество X. В зависимости от того, какой структурой наделено множество X,… … Математическая энциклопедия

    Или детерминант, в математике запись чисел в виде квадратной таблицы, в соответствие которой ставится другое число (значение определителя). Очень часто под понятием определитель имеют в виду как значение определителя, так и форму его записи.… … Энциклопедия Кольера

    О теореме из теории вероятностей см. статью Локальная теорема Муавра Лапласа. Теорема Лапласа одна из теорем линейной алгебры. Названа в честь французского математика Пьера Симона Лапласа (1749 1827), которому приписывают формулирование… … Википедия

    - (Laplacian matrix) одно из представлений графа с помощью матрицы. Матрица Кирхгофа используется для подсчета остовных деревьев данного графа (матричная теорема о деревьях), а также используется в спектральной теории графов. Содержание 1… … Википедия

    Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида… … Энциклопедия Кольера

Книги

  • Дискретная математика , А. В. Чашкин. 352 стр. Учебник состоит из 17 глав по основным разделам дискретной математики: комбинаторному анализу, теории графов, булевым функциям, сложности вычисления и теории кодирования. Содержит…

Задача 1.

Для данного определителя

найти миноры и алгебраические дополнения элементов α 12 , α 32 . Вычислить определитель: а) разложив его по элементам первой строки и второго столбца; б) получив предварительно нули в первой строке.

Находим:

М 12 =
= –8–16+6+12+4–16 = –18,

М 32 =
= –12+12–12–8 = –20.

Алгебраические дополнения элементов а 12 и а 32 соответственно равны:

А 12 = (–1) 1+2 М 12 = –(–18) = 18,

А 32 = (–1) 3+2 М 32 = –(–20) = 20.

а) Вычислим определитель, разложив его по элементам первой строки:

A 11 А 11 + a 12 А 12 + a 13 А 13 + a 14 А 14 = –3
–2 +

1
= – 3(8 + 2 + 4 – 4) – 2(– 8 – 16 + 6 + 12 + 4 – 16) + (16 – 12 – – 4 + 32) = 38;

Разложим определитель по элементам второго столбца:

= – 2 – 2
+ 1
= – 2(– 8 + 6 – 16 + + 12 + 4 – 16) – 2(12 + 6 – 6 – 16) + (– 6 + 16 – 12 – 4) = 38;

б) Вычислим , получив предварительно нули в первой строке. Используем соответствующее свойство определителей. Умножим третий столбец определителя на 3 и прибавим к первому, затем умножим на –2 и прибавим ко второму. Тогда в первой строке все элементы, кроме одного, будут нулями. Разложим полученный таким образом определитель по элементам первой строки и вычислим его:

= =
=
=
=

= – (– 56 + 18) = 38.

(В определителе третьего порядка получили нули в первом столбце по тому же самому, что и выше свойству определителей.) ◄

Задача 2.

Дана система линейных неоднородных алгебраических уравнений

Проверить, совместна ли эта система, и в случае совместности решить ее: а) по формулам Крамера; б) с помощью обратной матрицы (матричным методом); в) методом Гаусса.

Совместность данной системы проверим по теореме Кронекера – Капелли. С помощью элементарных преобразований найдем ранг матрицы

А =

данной системы и ранг расширенной матрицы

В =

.

Для этого умножим первую строку матрицы В на –2 и сложим со второй, затем умножим первую строку на –3 и сложим с третьей, поменяем местами второй и третий столбцы. Получим

В =

~

~
.

Следовательно, rang А = rang В = 3 (т. е. числу неизвестных). Значит, исходная система совместна и имеет единственное решение.

а) По формулам Крамера

x = x / , y = y / , z = z/ ,

=
= – 16;

x =
= 64;

y =
= – 16;

z =
= 32,

находим: x = 64/(– 16) = – 4, y = – 16/(– 16) = 1, z = 32/(– 16)= – 2;

б) Для нахождения решения системы с помощью обратной матрицы запишем систему уравнений в матричной форме АХ = . Решение системы в матричной форме имеет вид х = А –1 . По формуле находим обратную матрицу А –1 (она существует, так как = dеt A = – 16 ≠ 0):

A 11 =
= – 15, A 21 = –
= 16, A 31 =
= – 11,

A 12 = –
= – 3, A 22 =
= 0, A 32 = –
= 1,

A 13 =
= – 14, A 23 = –
= 16, A 33 =
= – 6,

A –1 =

.

Решение системы:

X = =
=
=

.

Итак, x = –4, y = 1, z = –2;

в) Решим систему методом Гаусса. Исключим x из второго и третьего уравнений. Для этого первое уравнение умножим на 2 и вычтем из второго, затем первое уравнение умножим на 3 и вычтем из третьего:

Из полученной системы находим x = – 4, y = 1, z = –2. ◄

Задача 5.

Вершины пирамиды находятся в точках А(2; 3; 4), В(4; 7; 3), С(1; 2; 2) и D(– 2; 0; – 1). Вычислить: а) площадь грани ABC ; б) площадь сечения, проходящего через середину ребер АВ , AC , AD ; в) объем пирамиды ABCD .

А) Известно, что S ABC =
. Находим:
= (2; 4; – 1) ,

= (– 1; – 1; – 2) ,

=
= – 9 i + 5 j + 2 k .

Окончательно имеем:

S ABC =
=
;

б) Середины ребер АВ , ВС и А D находятся в точках К (3; 5; 3,5),

М (1,5; 2,5; 3), N (0; 1,5; 1,5) . Далее имеем:

S сеч =
,

= (– 1,5; – 2,5; – 0,5),
= (– 3; – 3,5; – 2),

=
= 3,25i – 1,5j – 2,25k ,

S сеч =
=
;

в) Поскольку V пир =
,
= (– 4; – 3; – 5),

=
= 11, то V = 11/6 . ◄

Задача 6

Сила F = (2; 3;– 5) приложена к точке А(1; – 2; 2) . Вычислить: а) работу силы F в случае, когда точка ее приложения, двигаясь прямолинейно, перемещается из положения А в положение В(1; 4; 0) ; б) модуль момента силы F относительно точки В .

А) Так как А = F · s , s =
= (0; 6; – 2)
,

то F · = 2·0 + 3·6 + (– 5)(– 2) = 28; А = 28;

б) Момент силы М =
,
= (0; – 6; 2) ,

=
= 24 i + 4 j + 12 k .

Следовательно, =
= 4
.

Задача 8.

Известны вершины О(0; 0), A (– 2; 0) параллелограмма ОАС D и точка пересечения его диагоналей В(2;–2) . Записать уравнения сторон параллелограмма.

Уравнение стороны ОА можно записать сразу: y = 0 . Далее, так как точка В является серединой диагонали AD (рис. 1), то по формулам деления отрезка пополам можно вычислить координаты вершины D (x ; y ) :

2 =
, –2 =
,

откуда x = 6 , y = –4 .

Теперь можно найти уравнения всех остальных сторон. Учитывая параллельность сторон OA и CD , составляем уравнение стороны CD : y = –4 . Уравнение стороны OD составляется по двум известным точкам:

=
,

откуда y = – x , 2 x + 3 y = 0 .

Наконец, находим уравнение стороны AC , учитывая тот факт, что она проходит через известную точку А (– 2; 0) параллельно известной прямой OD :

y – 0 = – (x + 2) или 2 x + 3 y + 4 = 0 . ◄


Задача 9.

Даны вершины треугольника ABC : A (4; 3), B (– 3; – 3), C (2; 7) . Найти:

а) уравнение стороны AB ;

б) уравнение высоты CH ;

в) уравнение медианы AM ;

г) точку N пересечения медианы AM и высоты CH ;

д) уравнение прямой, проходящей через вершину C параллельно стороне AB ;

е) расстояние от точки C до прямой AB .

А) Воспользовавшись уравнением прямой, проходящей через две точки , получим уравнение стороны AB :

=
,

откуда 6(x – 4) = 7(y – 3) или 6 x – 7 y – 3 = 0 ;

б) Согласно уравнению

y = kx + b (k = tg α ) ,

угловой коэффициент прямой AB k 1 =6/7 . С учетом условия перпендикулярности прямых AB и CH угловой коэффициент высоты CH k 2 = –7/6 (k 1∙ k 2 = –1). По точке C (2; 7) и угловому коэффициенту k 2 = –7/6 составляем уравнение высоты CH : (y y 0 = k (x x 0 ) )

y – 7 = – (x – 2) или 7 x + 6 y – 56 = 0 ;

в) По известным формулам находим координаты x , y середины M отрезка BC :

x = (– 3 + 2)/2 = –1/2, y = (– 3 + 7)/2 = 2.

Теперь по двум известным точкам A и M составляем уравнение медианы AM :

=
или 2 x – 9 y + 19 = 0 ;

г) Для нахождения координат точки N пересечения медианы AM и высоты CH составляем систему уравнений

Решая её, получаем N (26/5; 49/15) ;

д) Так как прямая, проходящая через вершину C , параллельна стороне AB , то их угловые коэффициенты равны k 1 =6/7 . Тогда, согласно уравнению:

y y 0 = k (x x 0 ) , по точке C и угловому коэффициенту k 1 составляем уравнения прямой CD :

y – 7 = (x – 2) или 6 x – 7 y + 37 = 0 ;

е) Расстояние от точки C до прямой AB вычисляют по известной формуле:

d = | CH | =

Решение данной задачи проиллюстрировано на рис. 2 ◄

Задача 10.

Даны четыре точки A 1 (4; 7; 8), A 2 (– 1;13; 0), A 3 (2; 4; 9), A 4 (1; 8; 9) . Составить уравнения:

а) плоскости A 1 A 2 A 3 ; б) прямой A 1 A 2 ;

в) прямой A 4 M , перпендикулярной к плоскости A 1 A 2 A 3 ;

г) прямой A 4 N , параллельной прямой A 1 A 2 .

Вычислить:

д) синус угла между прямой A 1 A 4 и плоскостью A 1 A 2 A 3 ;

е) косинус угла между координатной плоскостью О xy и плоскостью А 1 А 2 А 3 .

А) Используя формулу уравнения плоскости по трем точкам , составляем уравнение плоскости А 1 А 2 А 3 :

откуда 6х – 7у – 9z + 97 = 0 ;

б) Учитывая уравнения прямой, проходящей через две точки , уравнения прямой А 1 А 2 можно записать в виде

=
=
;

в) Из условия перпендикулярности прямой А 4 М и плоскости А 1 А 2 А 3 следует, что в качестве направляющего вектора прямой s можно взять нормальный вектор n = (6; – 7; – 9) плоскости А 1 А 2 А 3 . Тогда уравнение прямой А 4 М с учетом канонических уравнений прямой запишется в виде

=
=
;

г) Так как прямая A 4 N параллельна прямой А 1 А 2 , то их направляющие векторы s 1 и s 2 можно считать совпадающими: s 1 =s 2 = (5; – 6; 8) . Следовательно, уравнение прямой A 4 N имеет вид

=
=
;

д) По формуле нахождения величины угла между прямой и плоскостью

sin φ =

е) В соответствии с формулой нахождения величины угла между плоскостями

cos φ =
=

Задача 11.

Составить уравнение плоскости, проходящей через точки M (4; 3; 1) и

N (– 2; 0; – 1) параллельно прямой, проведенной через точки A (1; 1; – 1) и

B (– 3; 1; 0).

Согласно формуле уравнения прямой в пространстве , проходящей через две точки, уравнение прямой AB имеет вид

=
=
.

Если плоскость проходит через точку M (4; 3; 1) , то её уравнение можно записать в виде A (x – 4) + B (y – 3) + C (z – 1) = 0 . Так как эта плоскость проходит и через точку N (– 2; 0; – 1) , то выполняется условие

A(– 2 – 4) + B(0 – 3) + C(– 1 – 1) = 0 или 6A + 3B + 2C = 0 .

Поскольку искомая плоскость параллельна найденной прямой AB , то с учетом формул условия параллельности прямой и плоскости имеем:

4A + 0B + 1C = 0 или 4A – C = 0 .

Решая систему

находим, что C = 4 A , B = – A . Подставим полученные значения С и B в уравнение искомой плоскости, имеем

A(x – 4) – A(y – 3) + 4A(z – 1) = 0 .

Так как A ≠ 0 , то полученное уравнение эквивалентно уравнению

3(x – 4) – 14(y – 3) + 12(z – 1) = 0 . ◄

Задача 12.

Найти координаты x 2 , y 2 , z 2 точки M 2 , симметричной точке M 1 (6; – 4; – 2) относительно плоскости x + y + z – 3 = 0 .

Запишем параметрические уравнения прямой M 1 M 2 , перпендикулярной к данной плоскости: x = 6 + t , y = – 4 + t , z = – 2 + t . Решив их совместно с уравнением данной плоскости, найдем t = 1 и, следовательно, точку M пересечения прямой M 1 M 2 с данной плоскостью: M (7; – 3; – 1) . Так как точка M является серединой отрезка M 1 M 2 , то верны равенства.; в) параболы, имеющей директрису b

  • Элементы линейной алгебры вданный раздел включены основные типы задач, которые рассматриваются в теме «Линейная алгебра»: вычисление определителей, действия н

    Документ

    Квадратной матрицы найти а) минор элемента ; б) алгебраическое дополнение элемента ; в) ... найти а) минор элемента ; б) алгебраическое дополнение элемента ; в) ее определитель, получив предварительно нули в первой строке. Решение а) Минором элемента ...

  • І. элементы линейной алгебры и аналитической геометрии

    Документ

    ... элементу матрицы». Определение. Алгебраическим дополнением элемента аік матрицы А называется минор Мік этой матрицы, умноженный на (-1)и+к: Алгебраическое дополнение элемента ... метода. Пример 1. Задана матрица Найти det A. Решение. Преобразуем...

  • Решение: при сложении двух матриц к каждому элементу первой матрицы требуется прибавить элемент второй матр

    Решение

    Го столбца; называют минором элемента . Тогда по определению считается (1) – алгебраическое дополнение элемента , тогда (2) ... Линейные операции над матрицами Задача. Найти сумму матриц и и произведение... совместна, то требуется найти её общее решение. ...

  • Методические рекомендации по выполнению внеурочной самостоятельной работы студента Дисциплина «Математика» для специальности

    Методические рекомендации

    Такой определитель называется минором элемента aij. Обозначается минор – Mij. Пример: Найти минор элемента а12 определителя Для... на единицу ниже и минор равен: Алгебраическим дополнением элемента определителя называется его минор взятый со своим...

  • Минором любого элемента определителя называется, определитель второго

    порядка, полученный вычеркиванием из данного определителя строки и столбца, содержащих этот элемент. Так минор для элемента

    для элемента :

    Алгебраическим дополнением любого элемента определителя называют минор этого элемента взятый с множителем , где i – номер строки элемента, j – номер столбца. Таким образом, алгебраическое дополнение элемента :

    Пример. Найти алгебраические дополнения для элементов определителя.

    Теорема . Определитель равен сумме произведений элементов любого его столбца или строки на их алгебраические дополнения.

    Другими словами, имеют место следующие равенства для определителя .

    Доказательство этих равенств состоит из замены алгебраических дополнений их выражениями через элементы определителя, при этом получим выражение (3). Предлагается это выполнить самостоятельно. Замена определителя по одной из шести формул называется разложением определителя по элементам соответствующего столбца или строки. Эти разложения применяют для вычисления определителей.

    Пример. Вычислить определитель, разложив его по элементам второго столбца.

    Используя теорему о разложении определителя третьего порядка по элементам строки или столбца, можно доказать справедливость свойств 1-8 для определителей третьего порядка. Предполагается проверить справедливость этого утверждения. Свойства определителей и теорема о разложении определителя по элементам столбца или строки позволяют упростить вычисления определителей.

    Пример . Вычислить определитель.

    Вычислим общий множитель «2» элементов второй строки, а затем такой же общий множитель элементов третьего столбца.

    Прибавим элементы первой строки к соответствующим элементам второй строки, затем третьей строки.

    Разложим определитель по элементам первого столбца.


    Миноры матрицы

    Пусть дана квадратная матрица А, n — ого порядка. Минором некоторого элемента аij , определителя матрицы n — ого порядка называется определитель (n — 1) — ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент аij. Обозначается Мij.

    Рассмотрим на примере определителя матрицы 3 — его порядка:
    Миноры и алгебраические дополнения, определитель матрицы 3 — его порядка , тогда согласно определению минора, минором М12, соответствующим элементу а12, будет определитель : При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы . Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 — его порядка будет выглядеть так:


    , знак перед произведением равен (-1) n , где n = i + j.

    Алгебраические дополнения:

    Алгебраическим дополнением элемента аij называется его минор , взятый со знаком «+», если сумма (i + j) четное число, и со знаком «-«, если эта сумма нечетное число. Обозначается Аij.
    Аij = (-1)i+j × Мij.

    Тогда можно переформулировать изложенное выше свойство. Определитель матрицы равен сумме произведение элементов некоторого ряда (строки или столбца) матрицы на соответствующие им алгебраические дополнения . Пример.

    Миноры матрицы

    Пусть дана квадратная матрица А, n - ого порядка. Минором некоторого элемента а ij , определителя матрицы n - ого порядка называется определитель (n - 1) - ого порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент а ij . Обозначается М ij .

    Рассмотрим на примере определителя матрицы 3 - его порядка:

    Тогда согласно определению минора , минором М 12 , соответствующим элементу а 12 , будет определитель :

    При этом, с помощью миноров можно облегчать задачу вычисления определителя матрицы . Надо разложить определитель матрицы по некоторой строке и тогда определитель будет равен сумме всех элементов этой строки на их миноры. Разложение определителя матрицы 3 - его порядка будет выглядеть так:

    Знак перед произведением равен (-1) n , где n = i + j.

    Алгебраические дополнения:

    Алгебраическим дополнением элемента а ij называется его минор , взятый со знаком "+", если сумма (i + j) четное число, и со знаком "-", если эта сумма нечетное число. Обозначается А ij . А ij = (-1) i+j × М ij .

    Тогда можно переформулировать изложенное выше свойство. Определитель матрицы равен сумме произведение элементов некторого ряда (строки или столбца) матрицы на соответствующие им алгебраические дополнения . Пример:

    4. Обратная матрица и её вычисление.

    Пусть А - квадратная матрица n - ого порядка.

    Квадратная матрица А называется невырожденной, если определитель матрицы (Δ = det A) не равен нулю (Δ = det A ≠ 0). В противном случае (Δ = 0) матрица А называется вырожденной.

    Матрицей , союзной к матрице А, называется матрица

    Где А ij - алгебраическое дополнение элемента а ij данной матрицы (оно определяется так же, как и алгебраическое дополнение элемента определителя матрицы ).

    Матрица А -1 называется обратной матрице А, если выполняется условие: А × А -1 = А -1 × А = Е, где Е - единичная матрица того же порядка, что и матрица А. Матрица А -1 имеет те же размеры, что и матрица А.

    Обратная матрица

    Если существуют квадратные матрицы Х и А, удовлетворяющие условию: X × A = A × X = E , где Е - единичная матрица того же самого порядка, то матрица Х называется обратной матрицей к матрице А и обозначается А -1 . Всякая невырожденная матрица имеет обратную матрицу и притом только одну, т. е. для того чтобы квадратная матрица A имела обратную матрицу , необходимо и достаточно, чтобы её определитель был отличен от нуля.

    Для получения обратной матрицы используют формулу:

    Где М ji дополнительный минор элемента а ji матрицы А.

    5. Ранг матрицы. Вычисление ранга с помощью элементарных преобразований.

    Рассмотрим прямоугольную матрицу mхn. Выделим в этой матрице какие-нибудь k строк и k столбцов, 1 £ k £ min (m, n) . Из элементов, стоящих на пересечении выделенных строк и столбцов, составим определитель k-го порядка. Все такие определители называются минорами матрицы. Например, для матрицы можно составить миноры второго порядкаи миноры первого порядка 1, 0, -1, 2, 4, 3.

    Определение. Рангом матрицы называется наивысший порядок отличного от нуля минора этой матрицы. Обозначают ранг матрицы r (A).

    В приведенном примере ранг матрицы равен двум, так как, например, минор

    Ранг матрицы удобно вычислять методом элементарных преобразований. К элементарным преобразованиям относят следующие:

    1) перестановки строк (столбцов);

    2) умножение строки (столбца) на число, отличное от нуля;

    3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), предварительно умноженных на некоторое число.

    Эти преобразования не меняют ранга матрицы, так как известно, что 1) при перестановке строк определитель меняет знак и, если он не был равен нулю, то уже и не станет; 2) при умножении строки определителя на число, не равное нулю, определитель умножается на это число; 3) третье элементарное преобразование вообще не изменяет определитель. Таким образом, производя над матрицей элементарные преобразования, можно получить матрицу, для которой легко вычислить ранг ее и, следовательно, исходной матрицы.

    Определение. Матрица , полученная из матрицыпри помощи элементарных преобразований, называется эквивалентной и обозначаетсяА В .

    Теорема. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

    С помощью элементарных преобразований можно привести матрицу к так называемому ступенчатому виду, когда вычисление ее ранга не представляет труда.

    Матрица называется ступенчатой если она имеет вид:

    Очевидно, что ранг ступенчатой матрицы равен числу ненулевых строк , т.к. имеется минор -го порядка, не равный нулю:

    .

    Пример. Определить ранг матрицы с помощью элементарных преобразований.

    Ранг матрицы равен количеству ненулевых строк, т.е. .